
ASC Portal Design & Architecture

A Case Study in
Grid Portal Development

Michael Paul Russell
Dept of Computer Science
The University of Chicago
russell@cs.uchicago.edu

Astrophysics Simulation Collaboratory

Washington University
Albert Einstein Institute
University of Chicago
University of Illinois at Urbana-Champaign
Rutgers University

Wai-Mo Suen
Ed Seidel
Ian Foster
Mike Norman, John Shalf
Manish Parashar

Principal investigators

A “Knowledge & Distributed Information” (KDI) Project
Funded by the National Science Foundation

A Laboratory for Large Scale Simulations of Relativistic Astrophysics

Building a computational collaboratory to bring the numerical
treatment of Einstein theory of general relativity to astrophysics

Project goals
� Develop a useful software base for applying numerical

treatment of Einstein theory to astrophysics research.

� Promote collaborative development among distributed
teams of scientists, researchers and developers.

� To make our software and tools widely-available to the a
astrophysics community.

� To coordinate the use of our software and computing
resources among members of the astrophysics community.

Proposed solution
� An N-tier Web-based application environment for developing,

distributing, and running Cactus and other useful applications
on remote resources as well as tools for managing those
resources.

� We’ll use Grid technologies to overcome the practical obstacles
of accessing resources due to the tremendous variety of resource
types, mechanisms, and access policies that exist today.

� While Cactus provides the modular framework we require for
building high-performance, parallelized, astrophysics applications
that will compile and run in most computing environments.

Key advantages to thin clients
� We want to deliver most of our application services with DTHML

based applications. Turns out with DHTML we can provide fairly
sophisticated client-side behavior, it just takes a lot of work!

� But this means users can access most of our application services
with any computer that has NS4+ & IE4+ installed. No other
client-side configuration is required.

� Easy to introduce new application services or re-implement
application services as required. Again, no need to reconfigure
Internet browser or other client-side software.

Key advantages to application server
� Better able to coordinate user activity. For example may group

user operations into more simple task units or introduce fault
tolerance for critical operations.

� Can monitor user activity and implement reporting facilities, such
emailing a user when a task completes or producing a weekly
summary of user tasks.

� Can introduce collaborative tools such as online chats and means
for users to share access to information and resources amongst
each other.

Basic security requirements

� Maintain secure HTTP communication between client applications
and our Web services.

� Use General Security Infrastructure (GSI) based authentication
and authorization wherever possible.

� Maintain an organizational MyProxy service to enable users to
store & retrieve short-lived GSI proxy certificates with our Web
services.

Advanced security requirements

� Ability to work with multiple GSI proxy certificates per user session
in order to authenticate to GSI-based services with different CAs
and/or distinguished name entries.

� Allow users to share access to various information and resources
where possible.

� Access control lists for restricting access on a per user basis to
various functions or resources our offered by our services.

Basic application requirements

� (GSI)FTP access to remote file systems.

� (GSI)SSH access to remote computer systems.

� (GSI)CVS access to shared code repositories.

� (GSI)LDAP access to GIIS/GRIS and other directory services.

� GRAM job submission and integrated with job monitoring tools.

Advanced application requirements

� Flexible task management facilities. For example, allow user to
spawn a file transfer in the background and check the status of
that transfer at a later time. Ability to cancel tasks where possible,
get a report to when the task is completed, schedule, etc…

� Ability to create and save custom tasks. First step: Allow user to
edit and save a particular GRAM request they may perform often.
Later: Integrate a task composition facility such as ANT.

Resource management requirements

� Manage “machine” definitions that users may utilize
through our Web services and restrict views of those definitions
as required.

� Facilities for verifying “machine” definitions, with the ability to
setup tests on various services and/or with various certificates.

� Basic search capabilities (white and yellow pages) for finding
appropriate resources on machines, primarily for locating
the most appropriate job queues.

Software management requirements

� Manage multiple Cactus distributions on remote machines.

� Checkout Cactus software from multiple CVS repositories into
remote distributions.

� Build Cactus applications remotely and the ability to maintain
configuration settings per machine to ease the build process.

� Edit and easily distribute Cactus parameter files.

� Run and monitor Cactus applications on remote machines.

Basic administrative requirements

� Manage user accounts, edit their profiles, even to kill user
sessions that may have been lost by the user.

� Monitor user activity (tasks), even to kill tasks where possible.

� Generate regular reports on user activity or anything useful
for administrative, research, or funding purposes.

Grid-tier architecture

1. Application services
2. Local resource brokers
3. Local resources

Information
resources

Computational
resources

Storage
resources

DHTML

Applets

Flash

Remote
clients

Phat
clients

Application
server

Resource
brokers

Remote resources /
Additional Services

Server-side architecture
HTTPS front-end (Stronghold)Client code

downloaded
onto http client

DHTML Application logic

Presentation logic (JSP & Bean-based page handling)

Model / data code Service invocation

Middleware libraries
S e c u r it y

m a n a g e m e n t
T ra n s a c t io n

m a n a g e m e n t
P e rs is t e n c e

m a n a g e m e n t

R e p o r t in g

Ta s k
m a n a g e m e n t

S e s s io n
m a n a g e m e n t L o g g in gE v e n t

s e rv ic e s

Application servlet (Running in Tomcat)

CoG, Public libraries, & Java libraries

File systems

Files Files

Relational
DBMS

Data Data

Direcotry
Service

Data Data

I/O APIs

Data APIs

Security APIs

Protocols

ASC Grid

Soft

Comp

Data GIS

Comp

Comp

Data

GIS

Soft

GIS

The ASC Grid includes the client machines that access
our Web application server, the application server and
the set of services and their resources our application
server makes available to users.

Data

GIS
Proxy

ASC MyProxy ASC GIIS Cactus CVS

Soft

myproxy.ascportal.org giis.ascportal.org cvs.cactuscode.org

www.ascportal.org

Application server

DHTML

Applets

ASC Software
GridSphere (org.ascportal.gridsphere)

Basic application server infrastructure for building multi-user,
multi-threaded application services for utilizing Grid technologies
to gain access to remote resources.

- Not Servlet / JSP specific, want to be flexible.
- Utilizes Java CoG, introduces new extensions
- Data model is a part of this infrastructure
- JDBC based persistence (only, for now that is).

Orbiter (org.ascportal.gridsphere.orbiter)

JSP-based application service built upon GridSphere.
- Delivers DHTMTL client-side applications
- JSP-page infrastructure for constructing pages
- Page-oriented Java Beans handle application logic

GridSphere packages
org.ascportal.gridsphere [one day packaged under org.gridsphere?]

- cactus : code for working with Cactus on remote resources
- grid : extensions to Grid technologies
- clients : incorporates machines and security packages with

grid client protocols provided by Java CoG.
- machines : extended machine management
- security : extended credential management
- tasks : encapsulates client requests as tasks

- logging : generic log management
- modules : code for managing application requests.
- orbiter : Orbiter packages
- reporting : generic report management
- security : application server security
- task : generic task management
- user : user profile and session management

Application server goals
� Develop an extensible Java application architecture that utilizes the

latest in Java technologies, Grid technologies, and Internet
standards for building multi-user, multi-threaded applications.

� Develop Java Servlet, RMI, CORBA, etc… extensions to this
architecture.

� Design all functions and tasks such that they can be monitored
and controlled by other users (administrators) if necessary.

� Since we track the state of remote files, jobs, etc., we need to
maintain consistency, thus need mechanisms for syncing up with
changes that are made externally.

� Fault tolerance… going beyond transaction management.

Client application goals
� Lots of thin-client design and applications ideas to pursue:

- Bring coding standards to the browser. Companies invest tons
of resources designing user interfaces, so should we… we are
building end-user applications.

- Bring the command line to the browser: Interactive shell access
to remote computers (GSI-SSH based), as Java applet or even
in DHTML. In my opinion, no operating environment is complete
without both command-line interfaces and GUIs.

� Offline-client idea: Be able to setup tasks on offline with a client
application and then sync up once back online, as with popular
email programs like Eudora and Outlook. Another

General design concepts
� Want to build compelling and comprehensive environments so

that users will want to conduct their daily activities with these
environments.

� May be unnatural to classify portals as user, application, or
administrative only. Instead be aware we’re developing
infrastructures in which communities will communicate and
conduct research (business). There is a lot of management that
will be necessary to maintain these services.

� Don’t forget to account for these things in your design:
- Grid services may not be available or properly configured on
remote resources.

- Someone needs to maintain all those services you’ve setup!
- Should be able to administer all aspects of your application
services at runtime if you care about high-availability

